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AbstrscL The zero-point fluctuations of a scalar field with Neumann baundaly wnditions 
are investigated on a flat circular disk. Ihe Helmholtz equationis is separated in oblate 
spheroidal modinates the mean-square force acting perpendicularly on the disk is 
calculated by picturing the disk as an oblate spheroid with zero eccentricity. Ihe force 
Y .,"*."~LY "IC. a ""IC 1 , .%I" LllC YlDL Y WhCII >,"all w"p"1c" ,nul 61. l l l C  l C l U l Y  

show that the fluctuations on a disk a x  roughly equal 10 those on a small sphere. For 
a one-sided disk divergences arise f" the sharp edge, but the mean-square force has 
the Same power dependence on T as for a hemisphere. 

i" "..a.""oA .:-- -P ""A .,." A&& i" "...",, _...""_A _.if* ^'p n_ _^..I.e 

I. Introduction and outline 

The present paper aims to extend the investigation of the fluctuations of Casimir 
forces to a finite, flat circular disk. As shown in the preceding paper (Eberlein 1W) 
the fluctuations can, with reasonable effort, be evaluated on the surfaces of spheres 
and hemispheres. It remains an open question to what extent the fluctuations are 
influenced by the geometrical shape of the object under consideration, e.g. one could 
ask whether or not a sphere may be regarded as a sufficiently good approximation 
also for a flat disk, as far as the fluctuations are concerned. 

However, the mathematical handling of an object that is flat, in the strict sense 
of the word, turns out to be a quite demanding, but challenging task. A flat disk 
has an infinitely sharp rim which makes the mathematical boundaly value problem 
for the wave or the Helmholtz equation ill-defined.An alternative way of tackling 
this problem is to start with an obiate spheroid and consider it in the iimit of zero 
eccentricity which corresponds to a flat circular disk. 

Since the mathematics required for treating the problem of a spheroid does cer- 
tainly not belong to a physicist's standard repertoire , some mathematical tools con- 
cerning the Helmholtz equation in spheroidal coordinates will have to be accumulated 
first. Based on these foundations, subject of section 2, the fluctuations on a flat circu- 
iar d i s ~  are evaiuaied in section j; a iwo-sided d i s ~  is treated as a iimit of a spheroid, 
and a one-sided disk as a limit of a hemispheroid. In both cases the disk is taken to 
have a radius small compared to the time T of time averaging, i.e. this paper deals 
exclusively with the long-wavelengths limit. 

The basic way the calculation runs is as that for a small sphere or hemisphere, 
respectively, expounded in the preceding paper; and it is helpful to keep this in mind 
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3040 C Eberlein 

in order not to be suffocated by too much mathematical detail. For simplicity the 
calculations will be restricted to the scalar field with Neumann boundary conditions, 
since for spheres and hemispheres this was seen to be very close to the Maxwell field 
as regards the fluctuations. 

2. The Helmholtz equation in oblate spheroidal coordinates 

21. Separation of the Helmhole equation 

Spheroidal wave functions represent a fairly special topic within mathematical physics. 
An excellent, thorough survey of the subject in a clear presentation which allows one 
to immediately extract formulae for the use in physical problems, is given in the book 
by Hammer (1957, I% for short henceforth)t. 

The oblate spheroidal mrdinates  are related to Cartesian coordinates via 

z = R J ( 1 - v 2 ) ( c 2 + 1 )  cosq  

y = R d ( 1 -  q 2 ) ( c 2  + 1) sin q 

z = RqC 

with the z axis being the axis of revolution and the parameter space given by 

- 1 < q < 1  o < < < m  o < q < 2 7 r .  

An oblate ellipsoid of revolution is then uni uel described by an equation = 
constant; its semi-major axis is equal to R (2 + 1 and its seml-mmor axls to RC. 
The degenerate case ( = 0 corresponds to a flat circular disk of radius R the other 
limiting case [ -+ m leads back to spherical coordinates with Rc + T ,  q + cos 8,  
and q, of course, stays as it is. 

The coordinates ( v , ( ,  q) form a right-handed orthonormal system. The metric 
coefficients in 

y .  . .  . 

d s 2  = h:dq2 + h;dc2  + h:dq2 

read (FL 2.2.2b) 

With the abbreviation 

c = k R  

t It also mnIains an extensive list of references and two Iables indicating how the noblions Of several 
other texts differ. The presenl author, however, sticks to Hammer's book in all questions of notation, 
normalit ion,  etc. 
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the Helmholtz equation turns into (FL 2.2.3b) 

Separation of variables leads to a solution (FL 2.2.5b)t 

$m,, = S,,(-ic,v)R,,(-ic,i€)e'"~ 

with S and R satifying the differential equations (FL 22.8, 9) 

a )] [ ' ' ,* ]S,,,,(-ic,q) = 0 (2.4) 
- (1  - v2)-Smn(-ic,v + A,, + c 7 - - av a [  av 1-11' 

R,,,(-ic,it) = 0. (2.5) 
" 1-11' m 2 1  - [Xmn - c t - - 

In imitation of the spherical limit the functions S,,,%(-ic,q) are henceforward re- 
ferred to as the angle functions, and the functions Rmn(-ic,i() as the radial func- 
tions. 

2.2. The angle finctiom 

For c = 0 the differential equation (2.4) is satisfied by the associated Legendre 
functions. The angle functions of the first kind (i.e. those finite at = i l )  therefore 
reduce to the associated Legendre functions of the first kind E',"(?) in the limit 
c -+ 0. It is appropriate to expand (FL 3.1.3b) 

where the prime indicates a restricted summation over even or odd P if n - m is 
even or odd, respectively. The coefficients in the above expansion may be obtained 
from the following recursion relation (FL 3.1.4) 

2(m + r ) ( m  + r +  1) - 2m2 - 1 c'] d r "  (c)  
+ ( 2 m + 2 r - l ) ( Z m + 2 7 - + 3 )  

r(r - 1)c' 
+ (2m + 2r  - 3)(2m + 27- - 1) P " ( c ) = O  '-' (r.20) (2.7) 

t l h i s  solution is generated from rhe one in pmlale spheroidal coordinates by the transfomalion - i<, 
c -+ -ic. The nolalion lhal originales from this lransformalion is kept here for transparency of reference. 
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with the eigenvalue Am, given by the expansion (FL 3.1.17-19) 
m 

ern = n(n + 1)  

I .  (2m - l ) (2m t 1)  
(272 - 1)(2n  t 3) 

e y  = [i - 
2 

The analogy to the small sphere (see preceding paper) where Watson's Lemma 
was applied suggests that one truncates the expansion for the coefficients d;" from 
a certain order of powers of e on, since small values of c deliver the important 
contributions to the fluctuations in the end. As d;" c( c * ( ~ - ~ + " )  for n - m 5 T ,  

there is only a finite number of ds to be included if one restricts oneself to a certain 
order of e. Up to order cz the coefficients d;" are given in appendix A for low 
values of n and m. 

23. The radial funclions 

The solutions 'Rci(- ie , i t )  and R:i(-ic, it) of the differential equation (2.5) 
reduce to the spherical Bessel functions j , ( c c )  and yn(cC), respectively, in the limit 
of c -+ 0. Similarly to the expansion for the angle functions (2.6) the functions Rei 
and R z i  can be expanded in terms of j , , ,+7(ct) and ymt,(c[), respectively, where 
again the coefficients d;" are involved. 

As it turns out, the angle and the radial functions of the same kind are propor- 
tional to each other, which can be used to expand the radial functions of the second 
kind Rei in terms of the regular and irregular associated Legendre functions, Ptm 

the expansion in terms of the spherical Bessel functions j,+,(cF) allows one to 
determine the value at t = 0. Skipping all intermediate technicahtiest one can write 

and Q;". This type of expansion is then appropriate for putting t = 0. For R,, (1) 

down for the derivatives of Rc; and R,, (2) with respect to at = 0 

for (n - m) even (2.8) 

for ( n  - m) even (2.10) - in-"'(2m t 1) X : = o ' d T . " ( - i c ) v  - 
2" m!cm+'dr'" (-ic) 

- in-m-1 (2m - 3)(2m - l ) m ! ~ " ' - ~ ~  
Z m t r  ! 

- 
2Z"-"+'(2m)!d~~"+1(-ic) I @ " (  -ic) r!  

fo r (n -m)odd  (2.11) 

t For a detailed discussion of al l  this see FL, chapter 4 
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Rgt(- ic , iO) a c---' (212) 

REz(-ic,iO) a C" for (n  - m) odd. (2 13) 

3043 

which are the quantities that gain importance in the following. Note especially 

3. Fluctuations on an oblate spheroid t 

3.1. Integration of the stress over the spheroid 

Let  the spheroid be given by c = to = constant .  The Neumann boundary wndition 
which requires the normal derivative of the scalar field + to vanish on the Surface, 
ie. - vcy5 = 0 (3.1) 

reduces the relevant stress-tensor components to 

SV( = SV( = 0. 
The infinitesimal surface element on the spheroid is 

dC = h,h,dipdqt?( = R 2 d w d $ o d q e c  

with t?( denoting the unit vector in the 
that the force is perpendicular to the surface of the spheroid, i.e. 

direction. From dF, = SijdCj it follows 

d F  = S E F d I : .  

Since 

the z component (i.e. the one along the axis of rotational symmetry) of the force 
acting on the spheroid reads 

t The basic reasoning of lhis section is analogous 10 the one for lhe sphere spelled out in h e  preceding 
paper, especially in Section 3. Ih Save space the general outline will no1 be repeated here, and the reader 
is expected lo be familiar with the comparatively simple spherical case. 
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3.2. The normal modes 

Defining the 'spheroidal harmonics' 

one can write down the normal modes for the scalar field, 

x Y;"'(k)YF(c,v) 

in close analogy to spherical wrdinates. The boundaly condition (3.1) fixes 

(3.3) 

The relevant matrix element of the force (3.2) on a spheroid is then, Lorentzian time 
averaging already included, 

For a hemispheroid the above expression applies almost unaltered; only the q 
integration runs from 0 to 1 rather than from -1 to 1. 

3.3. The spheroid 

The integration over the spheroid involves the three integrals 
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One easily recognizes that all three integrals are proportional to 6,-,,,. Further- 
more, the integrals vanish for i e -P  even, as the expansion (2.6) for s,, proceeds in 
steps of 2 in the lower index of the Legendre polynomials. The non-vanishing results 
of the above integrals are listed in appendix B.l for the lowest e and e'. 

The next step after the surface integration is the evaluation of 

As the functions S,, are solutions of the differential equation (2.4), general theorems 
about the Sturm-Liouville problem (see Morse and Feshbach 1953, pp 726729) 
ensure that the Y functions form a complete orthogonal set of eigenfunctions on the 
interval [-1,1]. Hence it is 

m 

/ d 3 k Y ; " * ( k ) Y r ' ( k )  = 6,,,,,,,6,,,l d k k 2 .  

If one abbreviates 
G;"(c,Fo) z cos6,,Rmf(-ic, i~,)  (1) + sin 6mfR,,,,(-ic,iCo) (2)  (3.9) 

(3.8) yields 
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where the Wonskian of RE; and '7Z:; (FL 4.1.21) 

Rt i ( - i c ,  ito)RE!(-ic,it0) - Rt;(-ic, ito)R:)c(-ic, i t o )  = 

was employed. With a quick look at (2.12), (2.13) and (2.8) one convinces oneself 
that for small c (3.10) is governed by the functions Rz:(-ic,iO). Equation (2.10) 
yields 

1 
.(Si + 1) 

(3.11) 1 Rg)'(-ic,iO) = - + ~ ( c )  
C 

(2)' Ro2 (-ic,iO) = - e3 + 0 (3.13) 

From (2.11) one easily obtains 

3- 
(3.14) W'( Eo, -ic,iO) = - 2 c2 + o(1). 

In order to get 7$)' one needs to determine the expansion coefficient dLZl first. 
Noting that drn = 0 for T < -2m (FL 3.5.6) the leading term is found from the 
recursion formula (2.7) 

12 C2 
d-l(-ic) = - 15 ' 

Then (2.11) entails 

45rr RI, (-ic,iO) = - 
4 e3 

(2)' (3.15) 

After insertion of (3.11) to (3.15) into (3.10) and the expression for A E '  the re- 
maining integrations Over k and k', i.e. Over c and e', are trivial, and eventually one 
finds for the fluctuations on a flat circular disk, in leading order 

or, expressed numerically, 

(3.16) 

(3.17) 
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3.4. The hemispheroid 
Having evaluated the fluctuations on a spheroid one would assume that there will not 
be any great difficulties in doing the same calculation for the hemispheroid in order 
to estimate the fluctuations on a one-sided disk, Le. a disk where the cnrrelation 
behveen the two sides are artificially switched off. All one would have to alter is the 
integration range for q in (3.4) to run from 0 rather than from -1. However, one 
thing that was not mentioned so far is that for to = 0 certain modes of V,,Q have 
a singularity at the edge of the disk described by 17 = 0. More precisely, the modes 
behave like 

(3.18) 

near the edge = 0 if s denotes the distance of a pint on the disk from the edge?. 
For the whole spheroid one did not need to bother about these singularities since 

they appear as 1/17 under the integral f l d q .  Since the forces on the two sides 
cancel at the edge, the Cauchy principal value is the appropriate prescription to get 
physically sensible results from those integrals. 

It was 
Bouwkamp (1946) who first examined the singularities along the sharp rim in Som- 
merfeld’s diffraction problem of the half-plane. He found exactly the same behaviour 
of the singularity as indicated in (3.18), arising of cnurse from the idealized concept 
of an infinitely sharp edge. More generally, at a sharp wedge with the opening angle 
a the singularities go like s”-l where v = r / (2n  - a). Van Blade1 (1991) shows 
this in a quick, but comprehensible way. Furthermore, as he also points out, the 
singular behaviour of the field is limited to the region ’near’ the edge where s is 
much smaller than the wavelength. This is, however, irrelevant in the present case 
since it is the long-wavelength limit that is under consideration here. Nevertheless, 
despite the singularities in the field the energy density stays integrable with respect to 
volume integration, so that there is nothing wrong in the physics even in the idealized 
case of an infinitely sharp rim. 

In the evaluation of the fluctuations on a one-sided disk the singularity enters due 
to the integral analogous to & in (3.7) Over the hemispheroid. Appendix B.2 lists 
the non-vanishing results of all three integrals for low I! and I!‘. 

Keeping only lowest powers in c and c‘ and neglecting all terms that vanish for 
to = 0, one arrives, along the Same l i e s  as before, at 

Now, in contrast, there is no getting away from these singularities. 

By use of (3.10) and (3.11) to (3.14) the final result for the fluctuations on a one-sided 
circular disk is then found to be in leading order 

t Note that s = Rq2/2  for poinls lhat lie on the disk. 
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Since contributions of order In EoR2/T’0 are not included here one has to impose 
the requirement 

(3.20) 

If one recalls the lengths of major and minor axes of the spheroid from section 2.1, 
the eccentricity to readily turns out to be the quotient of thickness and diameter of 
the disk. Even if one could get down to disks with to - there is still no difficulty 
in obeying (3.20). so that the result (3.19) is really the leading order contribution to 
the fluctuations on a one-sided disk. Putting to = one obtains the numerical 
value 

(3.21) 

4. Comparison and conclusions 

The two main results of this paper, the mean-square-deviations of the forces acting 
perpendicularly on a two- or one-sided flat circular disk, given by equations (3.16) 
and (3.19), are to be compared with the results for the fluctuations of the scalar field 
with Neumann boundary conditions on a sphere, a hemisphere and an embedded 
piston (see preceding paper, table 2, upper row). All objects are taken to be small 
compared with the typical time T of time averaging+. 

Comparison with sphere and hemisphere shows that the actual geometrical shape 
is indeed of minor importance; the two- and one-sided disks, respectively, yield the 
fluctuations with the same powers of R/T as their curved counterpartst. 

While, surprisingly, for the two-sided disk no difficulties occur in evaluating the 
fluctuations, the analogous calculation for the one-sided disk explicitly faces the sin- 
gularities on the sharp rim. This reminds one of the unphysical idealization made for 
the one-sided disk where correlations between the two sides are removed; in reality 
there are, of course, very strong correlations between the two sides near the rim. 

The main goal of this paper, however, was the comparison of the fluctuations on 
a (whole) disk (3.16) and on a sphere, leading to the conclusion that, as regards the 
fluctuations, any flat disk is reasonably well approximated by a sphere. In tackling 
more difficult problems than the fluctuations on a stationary, perfectly rigid object, 
like non-ideal boundary conditions or movable objects, one could consider a sphere 
rather than a disk, limiting the mathematical difficulties to a bearable extent and 
having a clear conscience about not doing too much wrong. 

t For a large disk, i.e. where the mmlal ion length is much smaller than geometrical a tent  of the disk, 
the flunuations on the WO sides are not correlated anyway, so that il makes no difference whether one 
considers an isolated disk or an embedded pislon. 
t This stays tme also for lhe scalar field with Dirichlel boundaty conditions as may be checked in a shozl 
calculation. 



Fluctuations of Casimir forces on finite objects: II 3049 

Appendix A. Expansion coefficients d y n  for low m, n 

From the recursion formula (2.7) one findst 

C 2  23c2 6 c2 

45 882 243 
dg2(-ic) = -: dq2(-ic) = 1 - - d!2( -ic) = 

3 c2 1 2  3 c2 
di2(-ic) = 1 + - d, (-ic) = - 

98 245 

where all terms of orders higher than c2 are omitted. 
The ds are normalized sa that the angle functions (2.6) reduce exactly to the 

corresponding associated Legendre polynomial for c = 0.  This is ensured here by 
requiring identical behaviour of the two functions at = 0 according to 

S,,(c,O) = P r ( 0 )  
Sk , (c ,O)  = P r ' ( 0 )  

for ( n -  m) even, 
for (n - m) odd.  

Appendix B. Surface integrations 

Bl.  Spheroid 

In the notation Ji (& m; e') and with to = 0 for the flat disk, one has 

~ l ( o , o ; 1 ) = - + o ( c * , c ' 2 )  4 J3(0,O;1)= * c 2 + o ( c ~ c ~ 2 , c 4 , c ~ 4 )  
3 9 

+ O(CZ,C'2) 
2 4 5  

&(1 ,0 ;2 )  = - 

Js Js 
&( 1 , l ;  2) = - + O(c2,  c'2) 

&(1,0 ;2)  = 2 f i +  O(CZ,C'*) 
15 

J2( 1 , l ;  2)  = - + O(c2,  c',) 
5 2 

,.a 
,7,(1,1;2)= - T + o ( c i , c ' 2 ) .  

t A method for obtaining the ds from (2.7) is explained ty Mane and Feshbach (1953) p. 1504. One has, 
however, to be careful in transferring results since their normalizalion is different from the one employed 
here. Besides, the recursion formula has a misprinted m2 instead of 2mZ in one of the numerators. 
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B2. Hemispheroid 

The integrals J l ,  J2, J3 (see (3.5) to (3.7)) are now evaluated for the range Jt dg.  
All terms that vanish in the limit &, -+ 0 are omitted, and so are higher terms in 
c and C’ even if they are infinite for So -+ 0. Note that all three integrals are still 

J 3 ( O , 0 ; O )  = O(CZC‘2)  

J3(0,O;1) = - c 2 +  4 O ( C ~ C ’ ~ , C 4 , C ’ 4 )  

J3(1,0;1) = -- 3 3  - - I n t o +  O ( c  2 , c  I2 ) 

. 7 3 ( 1 > 1 ; 1 ) =  , + O ( C  3 

9 

4 2  
3 
8 &( 1 , l ;  1) = - + O ( c 2 ,  c ‘ 2 )  

2 , C  ,2 ). 
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